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Maneuvering Flight Performance Using the Linearized
Propeller Polar

John T. Lowry*
Flight Physics, Billings, Montana 59104-0919

Fixed-pitch, propeller-driven, quasi-steady-state wings – level aircraft performance calculations are
made simply and realistically by employing the linearized propeller polar formulation. This analysis
extends that earlier treatment to banked turns and steady maneuvering. Building on the wings – level
theory, it is useful to consider an absolute banked ceiling, the highest altitude at which the airplane can
maintain level � ight when banked through a particular angle. Because the linearized propeller polar (or
bootstrap approach) is composed of such simple formulas, it is easy to construct a steady maneuvering
diagram, giving the pilot immediate visualization of the relations among airspeed, bank angle, load factor
limit, banked stall speed, rate of climb or descent, and either turning radius or rate. A precise prescription
for constructing such a steady maneuvering diagram is given. For level turns, expressions for minimum
turn radius and maximum turning rate are also given. It is found that these expressions for optimum
turns are operational and not overshadowed by banked stall speed limits. These banked bootstrap-turning
results are at considerable variance from the standard theory that assumes constant propeller ef� ciency
and constant power. It is concluded that this extended linearized propeller polar analysis is easy to
calculate and visualize and that it should be used more extensively in both pilot training and aircraft
operations.

Nomenclature
A = wing aspect ratio, span2/area
b = linearized propeller polar intercept
C = altitude engine power dropoff parameter
CD0 = parasite drag coef� cient
CLmax

= maximum lift coef� cient
CP = propeller power coef� cient
CT = propeller thrust coef� cient
D = drag
d = propeller diameter
E = composite bootstrap parameter
e = Oswald airplane ef� ciency factor
F = composite bootstrap parameter
G = composite bootstrap parameter
H = composite bootstrap parameter
h� = rate of climb
J = propeller advance ratio
K = composite bootstrap parameter
L = lift
M = engine torque
m = linearized propeller polar slope
n = propeller rps; load factor
P = power
Q = composite bootstrap parameter
R = aircraft turn radius; composite bootstrap parameter
S = reference wing area
T = thrust
U = composite bootstrap parameter
V = airspeed
W = gross aircraft weight
g = � ight-path angle
DS = stall speed buffer speed
df = � aps de� ection angle
h = propeller ef� ciency
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r = atmospheric density
s = relative atmospheric density
F = engine torque/power dropoff factor
f = aircraft bank angle
v = aircraft turning rate

Subscripts
AC = absolute ceiling
a = available
B = base case, mean sea level, maximum gross weight
bg = best glide
i = induced
max = maximum for level � ight
md = minimum descent rate
min = minimum for level � ight
n lim = load factor limit
p = parasite
r = required
S = stall
x = best climb angle
xs = excess
y = best climb rate
0 = standard value

Introduction

M ANEUVERING � ight performance has traditionally
been given fairly short shrift in propeller aircraft per-

formance textbooks and monographs1– 4 for two sets of rea-
sons. First, there are complications because of three very real
limitations superimposed on the elementary centripetal force
picture: 1) structural, the load factor g limit; 2) aerodynamic,
the raised stall speed while banking; and 3) raised power or
thrust requirements under the increased induced drag. Second,
there are descriptive and mathematical dif� culties. The turning
performance problem is essentially multivariable. Because the
pilot has control (within broad limits) over both V and f, many
different combinations of those lead to the same R or v. The
selection of optimum inputs must be suf� ciently supported. In
addition, some of the standard governing piston– propeller
equations, even though based on oversimpli� ed physical pic-
tures of maneuvering, are nontrivial quartics that lead to dif-
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Table 1 Sample bootstrap
parametersa

Bootstrap data
plate item Value

Aircraft
subsystem

S, ft2 174 Airframe
A 7.38 Airframe
Rated MSL torque

MB, ft-lbf
311.2 Engine

C 0.12 Engine
d, ft 6.25 Propeller
CD0 0.037 Airframe
e 0.72 Airframe
m 1.70 Propeller
b 20.0564 Propeller
a
Cessna 172.

� cult analytic solutions. Two such oversimpli� cations are 1)
restriction to level turns, with thrust and drag approximately
equal, and 2) assumption of constant propeller ef� ciency or of
constant engine power, unwarranted at these relatively low ma-
neuvering speeds.

The performance formulation using a linearized propeller
polar5– 7 has much to offer toward clarifying those muddy wa-
ters:

2 2C /J = mC /J 1 b (1)T P

The theory is also known by the shorter term, bootstrap ap-
proach, because in it one � ies the airplane brie� y, at one
weight and altitude, to gather the parameters that describe the
airplane’s steady-state performance extensively at any weight
or altitude.

The bootstrap approach is limited in both application and
audience. Because this approach only describes the main, full-
throttle, and gliding performance of rigid subsonic � xed-pitch,
propeller-driven reciprocating-engine-powered aircraft with
quadratic drag polars during quasi-steady-state coordinated
maneuvers, it cannot take the place of the whole panoply of
data collection and computer hardware and software or of the
more exhaustive (including partial throttle) performance � ight
tests needed in the safe design and ef� cient operation of mod-
ern high-performance aircraft. The unaugmented bootstrap ap-
proach, for instance, has nothing to say about aircraft stall or
spin characteristics, landing, or takeoff performance, or a
whole host of accelerated maneuvers that might be examined
by a conscientious manufacturer. The actual propeller polar,
CT/J2 as a function of CP/J2, is never perfectly linear, but in
practical cases it is fairly close; goodness-of-� t parameter R2

0.96 within typical applicable � ight regimes. And while theÇ=
bootstrap assumption that throttle position completely dictates
engine torque (at given altitude) is not strictly correct, typical
propeller/powerplant combinations show less than 5% varia-
tion in torque while the engine speed changes by as much as
700 rpm. The bootstrap approach is not an unassailable theory,
but we believe it is a respectable one.

Extensions to other types of the bootstrap approach are pos-
sible and have been constructed. Constant-speed propeller air-
craft can be brought into the fold by use of the (unpublished)
General Aviation General Propeller Chart. That is, essentially,
a recasting using general aviation propeller data of Boeing’s
venerable General Propeller Chart of World War II. Turbojet
aircraft, if one does not look closely at the details, are in some
respects simpler than propeller-driven ones. Treating turbojet
maximum thrust as approximately constant with airspeed (ig-
noring ram and secondary effects), with that thrust depending
on s raised to some fractional power, gives a start in that
direction.

The virtue of the bootstrap approach is that it gives student
pilots, college aviation and engineering students, and aircraft
designers, manufacturers, or modi� ers a simple low-cost
method of fairly accurately predicting the performance of gen-
eral aviation propeller airplanes. Though experimental vali-
dation is presently not extensive (the method is currently being
used by only a handful of small aircraft manufacturers and
modi� ers), the approach has so far proved surprisingly accu-
rate and robust. Performance � ight tests and calculations using
the bootstrap approach take less than 5% of the time needed
by a standard general aviation procedure. Wider use of the
bootstrap approach could translate into quicker design cycles
and higher pro� ts for a beleaguered small aircraft industry.

Here, we extend the ordinary wings – level bootstrap ap-
proach to include steady coordinated turns. We � nd that this
maneuvering version leads to simple heuristics and realistic
and tractable equations. After introducing the main bootstrap
parameters and their composite cousins, along with formulas
for six important V speeds and other performance items, we
display and derive a steady maneuvering chart. It was pointed

out that our chart is very similar to the doghouse chart8 long
used to depict the turning performance of high-performance
aircraft. (A minor difference is that the doghouse chart does
not include explicit aircraft bank angles.) Our chart, in
airspeed– bank-angle space, makes for easy visualization of
operational tradeoffs and limitations and allows the convenient
selection of safe and optimized operating procedures. An ab-
solute banked ceiling, the greatest density altitude at which the
airplane can � y level when banked through a speci� c angle,
will be a useful ancillary concept. In contrast to the ordinary
wings – level absolute ceiling, this ceiling is physically attain-
able; it is also easily calculated and surprisingly intuitive. Fi-
nally, we calculate, for level turns, expressions for minimum
turning radius and maximum turning rate, and contrast our
results with those of the standard theory.

Wings – Level Bootstrap Approach
Computing quasi-steady-state aircraft performance using the

wings – level � xed-pitch normally aspirated version of the
bootstrap approach requires the nine aircraft parameters ex-
empli� ed, for a Cessna 172, in Table 1. Only CD0 and e depend
on � ap/gear con� guration. In concrete application, one also
has values for the two variables W and s (or its surrogate hr).

The proportional mechanical power loss independent of al-
titude C (which can almost always be taken as 0.12), governs
full-throttle torque at altitude through the power dropoff fac-
tor F:

M(s) = F(s) 3 M (2)B

The time-honored form9 for this dropoff factor is

F(s) = (s 2 C )/(1 2 C ) (3)

Instead of using rated MSL torque directly, it can be used
through the more common MSL full-throttle power and engine
rotation speed. The relation is

M = P /2pn (4)B B B

Practical work is sped up by using composite bootstrap pa-
rameters in forms that either do or do not incorporate explicit
weight and altitude dependencies. The four required � rst-line
composites are

E = F(s)E , with E = mP /n d (5)B B B B

2F = sF , with F = r d b (6)B B 0

1–G = s G , with G = r SC (7)B B 2 0 D0

2 2W 1 2W B
H = H , with H = (8)B BS DW s r SpeAB 0
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Fig. 1 Speeds Vy and Vx vs bank angle for two altitudes. Cessna
172, � aps up, 2400 lbf.

Table 2 Sample composite bootstrap parameters at three
altitudes

Variable or
composite

Case 1,
MSL

Case 2,
6000 ft

Case 3,
12,000 ft

W 2400 lbf = WB 2400 lbf = WB 2400 lbf = WB

s 1.0000 0.8359 0.6932
F(s) 1.0000 0.8135 0.6513
E 531.911 = EB 432.697 346.451
F 20.0052368 = FB 20.0043772 20.0036300
G 0.0076516 = GB 0.0063956 0.0053039
H 1,668,535 = HB 1,996,192 2,407,100
K 20.0128884 = KB 20.0107729 20.0089339
Q 241,270.6 = QB 240,165.4 238,779.5
R 2129,460,301 = RB 2185,297,929 2269,435,170
U 218,064,595 = UB 312,118,214 453,840,065

It is often convenient to use second-level composite boot-
strap parameters:

K = sK , with K = F 2 G (9)B B B B

F(s)
Q = Q , with Q = E /K (10)B B B B

s

2
W 1 HB

R = R , with R = (11)B BS D 2W s KB B

2
W 1 HB

U = U , with U = (12)B BS D 2W s GB B

Standard weight WB is usually taken to be the airplane’s
maximum gross weight. Bootstrap formulas for the six V
speeds, as true airspeeds in ft/s, are

2 22E 7 E 1 4KH Q QÏÎ ÎV = = 2 6 1 Rmax/min Î2K 2 4

(13)

2 22E 2 E 2 12KH Q Q RÏÎ ÎV = = 2 1 2 (14)y Î6K 6 36 3

1/4

2H 1/4V = = (2R) (15)x S DK

1/4
H 1/4V = = U (16)bg S DG

1/4 1/4
H U

ÇV = = = 0.7598V (17)md bgS D S D3G 3

These six V speed results5 come directly from the following
performance quantities:

3P [ TV = EV 1 FV (18)a

3P [ DV = GV 1 H/V (19)r

3P [ P 2 P = EV 1 KV 2 H/V (20)xs a r

2T(V ) = E 1 FV (21)

2 2D(V ) = D (V ) 1 D (V ) = GV 1 H/V (22)p i

2 2T [ T 2 D = E 1 KV 2 H/V (23)xs

In addition, it’s useful to have formulas for

3P (V ) EV 1 KV 2 H/Vxs�ROC(V ) = h (V ) = = (24)
W W

2 2T (V ) E 1 KV 2 H /Vxs2 1 21g(V ) = sin = sin (25)F GW W

where ROC = rate of climb. The wings – level composite pa-
rameters are evaluated at three different altitudes in Table 2.
Bootstrap absolute ceiling results will be given in later in this
paper.

Extension of Bootstrap Approach
to Maneuvering Flight

In wings – level, constant-altitude unaccelerated � ight, to our
approximation (no off-axis thrust component), L is equal to W.

When the pilot wants to turn the airplane, he or she banks to
some angle f, tilting the lift vector toward the desired direc-
tion. To maintain altitude, the pilot also applies suf� cient back-
stick, enlarging the vertical component of lift, to balance
weight. Since increased lift means increased induced drag, the
pilot must also add power if airspeed is to be held constant.

This additional induced drag while turning leads to the only
modi� cation of the wings – level bootstrap approach required
to encompass quasi-steady-state maneuvering � ight:

2H [ H(0) ® H(f) [ H(0)/cos f (26)

(The parenthesized zero denotes a value for unbanked, wings –

level, � ight.) For most (not all) intents and purposes, banking
to angle f is tantamount to increasing gross weight from W
to W/cos f. Several banked V speeds transform precisely, as
does the stall speed:

V (0)S/xbg/mdV (f) = (27)S/xbg/md
cos fÏ

where the wings – level stall speed is given by

2W cos g 2W
ÇV (0) = = (28)S Î ÎrSC rSCL Lmax max

For our sample Cessna, with � aps up, = 1.54. Vx(0),CLmax

Vbg(0), and Vmd(0) are given by Eqs. (15 – 17) in the previous
section. Figure 1 shows the effect, on speeds for best angle
and rate of climb, of banking at two sample altitudes.

Speeds for the best rate of climb and for the minimum or
maximum level � ight are somewhat more complicated. In the
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Fig. 4 Flight-path angle vs airspeed for four bank angles. Cessna
172, MSL, � aps up, 2400 lbf.

Fig. 3 Rate of climb vs airspeed for four bank angles. Cessna
172, MSL, � aps up, 2400 lbf.

Fig. 2 Low and high speeds of level � ight and stall speeds vs
bank angle for two altitudes. Cessna 172, � aps up, 2400 lbf.

banked case, those three V speeds depend, instead of simply
on R = R(0) as in Eqs. (13) and (14), on

2R(f) [ R(0)/cos f (29)

As is shown in Fig. 1, Vx is affected more by banking than
Vy. That is because Vx depends on excess thrust, and induced
drag drops off faster with airspeed than the induced power
responsible for the speed dependence of Vy.

Figure 2 shows the dependence of minimum and maximum
level � ight and stall speeds on bank angle at two different
altitudes.

Banked forms for rate and angle of climb are arrived at by
substituting H(f) for H = H(0) in Eqs. (24) and (25). Figures

3 and 4 show the speed dependence of rate and angle of climb
at MSL for four speci� c bank angles. Cutoffs on the left por-
tions of those eight graphs are a result of impending stall
speeds.

Banked or Unbanked Absolute Ceilings
An airplane’s unbanked absolute ceiling, while perhaps a

theoretical performance benchmark worthy of record, is not
attainable. For the airplane at a given weight in given con� g-
uration there are two numbers involved: 1) the ceiling � gure,
a density altitude; and 2) the airspeed the aircraft requires to
stay at that altitude (if dropped there by some higher-� ying
entity). The airplane’s banked ceilings, however, are readily
achieved; those are therefore a much more practical and inter-
esting set of � gures, one for each � nite bank angle. The air-
plane’s (banked or unbanked) absolute ceiling is characterized
analytically by the graphs of Pa and Pr, using the possibly
banked form of H, touching at one point. The expression of
that osculation is that both Pxs and dPxs/dV are zero. Using Eq.
(20) to express that dual condition, one can use elementary
methods to derive (somewhat circuitously) simple expressions
for the required ceiling airspeed and altitude for given gross
weight and bank angle:

V (W, f) = 2H(f)/E (30)ÏAC

0.234943h = 145,457(1 2 s ) (31)rAC AC

The ceiling relative air density is given in terms of the ceil-
ing power dropoff factor

s = (1 2 C )F 1 C (32)AC AC

which, in turn, is given by

2W
F (W, f) = 2K H (0) (33)ÏAC B B

W E cos fB B

For our sample Cessna, wings level, and W = 2400 lbf, one
may run through these last four formulas, in reverse order, to
� nd VAC = 81.2 knots true air speed (KTAS) = 63.2 knots
calibrated air speed (KCAS), sAC = 0.6052, and hr = 16,187
ft. Looking at Eq. (33) in a relative way gives the following
useful relation:

F (W, f = 0)AC
F (W, f) = (34)AC

cos f

Banking the airplane at some density altitude hr is equivalent
to dragging the ceiling down toward that altitude. Bank it
enough, and the absolute banked ceiling descends onto the
aircraft or even, temporarily, slides beneath it. If our sample
Cessna banks 30 deg, for instance, its absolute ceiling is re-
duced from 16,187 to 12,587 ft. If the airplane is at a density
altitude of 12,587 ft, it can bank more than 30 deg, but when
it does so, its full-throttle best-climb angle and rate go negative
and the aircraft descends to stabilize at a new and even lower
banked ceiling. Each ceiling requires the speci� c airspeed
given by Eq. (30). To maintain altitude, our wings – level
Cessna at an absolute ceiling of 16,187 ft must � y at 63.2
KCAS; banked 30 deg at an absolute banked ceiling of 12,587
ft, it must � y at 67.9 KCAS. Both speeds are the pertinent
speeds for the best angle of climb Vx(W, f) which, in the
bootstrap approach and expressed in calibrated (equivalent)
terms, are independent of density altitude.

It is instructive to investigate the range of turning possibil-
ities with this aircraft at its service ceiling = 100 ft/min,�(hmax

at the appropriate Vy). By trial and error on hr [using Eq. (24)],
the maximum gross weight service ceiling is found to be
13,773 ft, with corresponding Vy = 80.4 KTAS. The maximum
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Fig. 5 Absolute ceiling and ceiling airspeed for two weights.
Cessna 172, � aps up.

Fig. 6 Turn radius maneuvering chart for Cessna 172, MSL, lx
� aps up, 2400 lbf.

Fig. 7 Turn radius maneuvering chart for Cessna 172, 12000 ft,
� aps up, 2400 lbf.

possible bank angle, before one starts down, is only 24.86 deg
at 82.0 KTAS with turn radius R = 1285 ft. The minimum
radius turn at this altitude, however (using techniques devel-
oped in the next section), is R = 1165 ft at 74.4 KTAS (about
8 kn above the 66.2-KTAS banked stall speed), banked 22.8
deg. This aircraft, if in the straitened circumstance of a nar-
rowing canyon, is about to preclude the possibility of turning
toward lowering terrain. Such circumstances cause some gen-
eral aviation mountain � ying accidents and provide a good
reason for using steady maneuvering charts. Figure 5 shows
banked absolute ceilings and ceiling air speeds for bank angles
up to 60 deg for two aircraft weights.

Let us now consider W and hr as given and inquire into the
corresponding maximum permissible level-� ight bank angle
and ceiling speed. First, Eq. (31) is inverted to give

4.25635
hrAC

s = 1 2 (35)AC S D145,457

with FAC then given by Eq. (2). Using Eq. (26) in the oscu-
lation condition then tells us the maximum bank angle for level
� ight at this altitude is

2 1f = cos [2 2KH(0)/E ] (36)ÏAC

The corresponding ceiling airspeed is given by Eq. (30).
These ceiling manipulations serve to show how simple boot-
strap calculations are when one uses composite parameters and
how intuitive the banked absolute ceiling concept soon be-
comes.

Steady Maneuvering Charts for Turn Radius
and Turning Rate

A complete set of steady maneuvering charts (see Figs.
6 – 9 for examples) might consist of two dozen or more indi-
vidual charts: perhaps for two gross weights, three density al-
titudes, two con� gurations, and the two outputs turn radius R
and turning rate v. While the number could be reduced by
combining some of those, for clarity we won’t combine them.
Since maneuvering possibilities are enhanced by power, at
least for low-performance aircraft, these will be full-throttle
charts. Because the bootstrap approach is a variant of the ven-
erable power-available/power-required analysis, the small
� ight-path angle is assumed. This means there are small errors
(beyond any of the linearized propeller polar itself) in all the

graphs making up the chart. But if one iterates [using Eq. (25)
selectively for the � ight-path angle], the errors will be found
to be practically negligible except at extreme descent rates
never used for steady turns.

The two outputs of interest are given by the following stan-
dard formulas:

2R = V /g tan f (37)

v = V/R = g tan f /V (38)

It is clear from Eqs. (37) and (38) that desirable maneuver-
ing characteristics, small R and large v, both result from small
values of V and large values of f, but, as usual in aeronautical
work, the devil is in the details. It is those details that the
steady maneuvering charts are designed to elucidate. While
these charts employ essentially the same independent varia-
bles, V and f, as the more common V-n (sometimes, V-g)
diagrams, their use is much different. The V-n diagram de-
scribes the � ight envelope predominately in terms of quick
control inputs, stalls, load factor limits, and the never-exceed
speed. It includes negative-g (or inverted � ight) possibilities.
Quick noncontrol inputs, from gusts, are often overlaid on the
V-n diagram. Our charts, on the contrary, consider only quasi-
steady-state maneuvering (steady turns). Though the load fac-
tor limit is included, it is hardly ever a serious concern when
using a steady maneuvering chart.

To use either of the steady maneuvering charts, one must
provide answers to two questions: 1) how close to the stall is
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Fig. 8 Turn rate maneuvering chart for Cessna 172, MSL, � aps
up, 2400 lbf.

Fig. 9 Turn rate maneuvering chart for Cessna 172, 12000 ft,
� aps up, 2400 lbf.

one willing to venture? and 2) how large a descent rate can
one live with? If the answers are, respectively, 5 kn and 250
ft/min, then at MSL in our sample aircraft, Figs. 6 and 7 pro-
vide a turn radius of about 310 ft and a turning rate of about
25 deg/s, each at about 78 KTAS banked about 60 deg. If the
airplane is up at 12,000 ft, however, Figs. 8 and 9 provide a
turn radius of about 560 ft and a turning rate of about 14 deg/s,
each at about 77 KTAS and banked about 44 deg.

If level turns were prescribed at 12,000 ft, then the pilot will
get a minimum turn radius and a maximum turning rate at
speeds greater than the banked stall speed. At higher altitudes,
the curves of constant climb or descent rate have emerged from
behind the limb of the banked stall curve. The standard ma-
neuvering speed important in rough air, the speed at which the
banked stall curve crosses the load factor limit, is too large
here (119 KTAS) to be of signi� cance for steady turns. High-
performance aircraft may very well enter a turn with such ex-
cess speed (above the stall) that slowing down to enhance turn
performance is a viable option. For low-performance aircraft,
however, the inevitable slowing because of increased induced
drag in the turn is about all they can afford.

To construct steady maneuvering charts for a speci� c air-
plane, one must have the nine bootstrap parameters for the
desired � aps/gear con� guration plus the appropriate positive g
limit and . The procedure for getting the four harder-to-CLmax

get parameters is adumbrated in Ref. 5 and given in full detail
in Ref. 7. Next, a particular weight and density altitude is
selected. The following � ve different kinds of curves can then
be drawn.

Load Factor Limit

For the Cessna 172 normal category airplane, the � aps up-
� ight load factor limit is 3.8 g. That means

L W cos g 1
Çn [ = = # 3.8 (39)

W W cos f cos f

independent of V. The limiting bank is then

2 1f = cos (1/3.8) = 74.74 deg (40)nlim

Banked (and Padded) Stall Limit

Using Eqs. (27) and (28), allowing for the pad DS, and in-
verting

2W
2 1f = cos (41)S1DS F G2rSC (V (f) 2 DS )L Smax

Curves of Constant Climb or Descent Rate

Using Eq. (26) in Eq. (24) and solving (using rate of climb
h� in ft/min)

H(0)
2 1

�f = cos (42)h Î 2 2 �V (E 1 KV ) 2 Wh V/60

Curves of Constant Turn Radius R

Inverting Eq. (37)

21 2f = tan (V /gR) (43)R

Curves of Constant Turning Rate v

Inverting Eq. (38) (and using turning rate v in deg/s)

21f = tan (pVv /180g) (44)v

Because only the curves associated with stalling and with
climb rate vary with density altitude, it doesn’t take a great
deal of effort to construct a full set of steady maneuver charts
for a given airplane.

Level Maneuvering Flight Performance Results
As representative of the standard piston-propeller maneu-

vering theory, we take formulas derived by Hale,4 also cited
by Adamson,2 for level (thrust equals drag) turns. Similar for-
mulas are treated, somewhat more extensively and with fewer
approximations, by Miele.10 Those authors express the varia-
bles of interest, R and v, in terms of the load factor n (standing
in for f) and V. To � nd optima, they differentiate those ex-
pressions with respect to V, set those derivatives equal to zero,
and solve. With functions of two variables, one cannot in gen-
eral be assured of successfully using that procedure to � nd
relative minima or maxima of the full function. Kaplan11 has
a clear and simple counterexample. Because their resulting ex-
pressions are complicated, Hale4 and Adamson2 also make
warranted discards of small terms. Results are to be taken as
only indicative because their calculated airspeeds for optimal
turns are considerably below the associated banked stall
speeds.2,4 That is also often the case when using our alternative
calculation procedure but not always. At higher altitudes, the
analytic relative optima may prevail. First consider turn radius
R(V, f), given by Eq. (37). In the bootstrap approach, because
the low speed for level � ight is concerned, we have Eq. (13)
for V(f) or, because g = 0, we can solve that specialization of
Eq. (25) for f(V ). Neither of the resulting expressions, in this
level case, is particularly complex and neither requires ap-
proximation. Using both of those procedures, ordinary calculus
gives

21 2f = tan 1 1 [4H(0)/KQ ] (45)ÏminR
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Table 3 Optimum level turns,
standard, and bootstrap

approaches

Value for
optimum

Standard
approach

Bootstrap
approach

VminR 43.7 KTAS 69.8 KTAS
fminR 30.0 deg 28.0 deg
Rmin 292 ft 813 ft
Vmaxv 65.5 KTAS 75.9 KTAS
fmaxv 45.0 deg 31.0 deg
vmax 16.7 deg/s 8.6 deg/s

which shows, since the radicand is less than unity, that fminR

is always less than 45 deg, and

V = 2H(0)/E (46)ÏminR

The search for inputs giving a maximum turning rate also
provides fairly simple results:

2 1Ïf = tan 22 2 Q (2K )/H(0) (47)Ïmaxv

1/4

2H(0)
V = (48)maxv F GK

The subscripts min R and max v must be interpreted in a
provisional sense. To see whether the banked stall speed is
higher, and therefore overriding, the appropriate steady ma-
neuvering chart, or an ancillary calculation, must be consulted.

The corresponding approximations from Hale4 are

Çf = 30 deg (49)minR

independent of weight or altitude

28W
ÇV = (50)minR

3 3 550hrSpeA(hp)

and, for maximum turning rate

Çf = 45 deg (51)maxv

24W 3
ÇV = = V (52)maxv minR

550hrSpeA(hp) 2

Table 3 gives a detailed comparison for our sample Cessna
172, � aps up, at 12,000 ft at W = 2400 lbf. Both standard
approach optimum speeds are less than the actual banked stall
speeds and are therefore not operationally feasible. For this
relatively high-altitude case, the bootstrap approach results are
greater than the actual banked stall speeds.

Conclusions
The linearized propeller polar or bootstrap approach is easily

generalized to encompass maneuvering � ight. It gives simple
analytic results for the main variables of interest: banked (or
unbanked) ceiling speci� cations, turn radius, turning rate, and
speci� cation of optimum level conditions for the latter two
results. Steady maneuvering charts for a range of weight and
altitude situations are fairly easily constructed. Those provide
a graphic display of operational limitations and suggest opti-
mum safe turning speeds and bank angles for any given situ-
ation. To promote safe operation, pilot training ground schools
should demonstrate the use of steady maneuvering charts, and
general aviation aircraft manufacturers should consider includ-
ing such charts in the approved � ight manuals for their aircraft.
The linearized propeller polar is less restricted, in its sphere
of application, than the current standard approach to maneu-
vering calculations. It also gives more realistic results at con-
siderable variance from the standard approach.

References
1Hurt, H. H., Aerodynamics for Naval Aviators, U.S. Navy, 1965,

pp. 176 – 182.
2Adamson, J. C., Aircraft Performance, U.S. Military Academy,

1991, Chaps. 27, 30.
3Perkins, C. D., and Hage, R. E., Airplane Performance Stability

and Control, Wiley, New York, 1949, pp. 201 – 203.
4Hale, F. J., Aircraft Performance, Selection, and Design, Wiley,

New York, 1984, pp. 151 – 160.
5Lowry, J. T., ‘‘Analytic V Speeds from Linearized Propeller Po-

lar,’’ Journal of Aircraft, Vol. 33, No. 1, 1996, pp. 233 – 235.
6Lowry, J. T., ‘‘The Bootstrap Approach to Predicting Airplane

Flight Performance,’’ Journal of Aviation/Aerospace Education and
Research, Vol. 6, No. 1, 1995, pp. 25 – 33.

7Lowry, J. T., Computing Airplane Performance with the Bootstrap
Approach: A Field Guide, M Press, Billings, MT, 1995.

8Ward, D. T., Introduction to Flight Test Engineering, Elsevier, New
York, 1993, Chap. 3.

9Gagg, R. F., and Farrar, E. V., ‘‘Altitude Performance of Aircraft
Engines Equipped with Gear-Driven Superchargers,’’ SAE Transac-
tions, Vol. 29, No. 3, 1934, pp. 217 – 223.

10Miele, A., Flight Mechanics-1: Theory of Flight Paths, Addison –

Wesley, Reading, MA, 1962, pp. 149 – 189.
11Kaplan, W., Advanced Calculus, Addison – Wesley, Reading, MA,

1952, pp. 122 – 124.


